If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=112
We move all terms to the left:
n^2+n-(112)=0
a = 1; b = 1; c = -112;
Δ = b2-4ac
Δ = 12-4·1·(-112)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{449}}{2*1}=\frac{-1-\sqrt{449}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{449}}{2*1}=\frac{-1+\sqrt{449}}{2} $
| -13=-6+-p | | 2=2(d-7) | | f+33/9=9 | | 85•(3+j)j=2 | | 5(1/5x+2)=4(x-2) | | k/7+33=36 | | s/4+13=15 | | X+(x+27)+(4x-31)=1112 | | j-2/3=2 | | 83•(3+j)j=2 | | -1/2x+14=17 | | 13n-9=7 | | 1/5(x+.5)+5.24=3/2x | | 6x-42=36 | | 2=2m/−7 | | -2u+-5=3 | | -6y-17=-107 | | 8+3(2v-3)=-5(3v-3)+3v | | 2(x–7)=x–5 | | 3=19-4p | | 3x+4x-8=23 | | z/3+-6=-5 | | 11p-6=38 | | -10.9p+3.9=-9.8 | | w+26/4=9 | | 11=(z/3)+9 | | 4(x+1)=-5(3x-2)+7x | | -4×k=48 | | Y=3c-9 | | d/3+-10=-13 | | (q/2)-(-8)=12 | | 2j=63-7j |